
PROCEEDINGS, TOUGH Symposium 2012
Lawrence Berkeley National Laboratory, Berkeley, California, September 17-19, 2012

 - 1 -

A NEW LIBRARY TO IMPROVE TOUGH PARALLEL DEVELOPMENT

Noel Keen, George Pau, Jeff Johnson, Eric Sonnenthal, Stefan Finsterle

Lawrence Berkeley National Laboratory
Earth Sciences Division, MS 74-0120

Berkeley, CA 94720
e-mail: NDKeen@lbl.gov

ABSTRACT

Many users and developers have contributed to
the success of the TOUGH suite of codes.
However, the wide range of problems the codes
can simulate has led to significant modification
and fragmentation of the codes, exemplified by
the multiple flavors of TOUGH. Maintenance of
the codes becomes increasingly difficult, and
improvement in one branch of the codes cannot
be easily propagated to other branches. In
addition, parallel computing resources cannot be
uniformly utilized by all the codes, due to the
lack of a parallel programming framework that
simplifies this task.

We are in the process of re-engineering the
TOUGH codes, specifically by developing a
library (named toughlib), which includes
functions that are commonly used by the
TOUGH codes, such as the linear solvers. For
example, adding a new parallel linear solver
package (such as PETSc) to toughlib would
enable any TOUGH code to use it. We are also
writing functions that hide more complex
constructs such as parallelism behind an
abstraction layer, which will make it easier to
combine serial and parallel versions of TOUGH
codes. When complete, the toughlib library will
serve as a working Application Programming
Interface (API), so that all TOUGH codes using
it will have similar structure. We will demon-
strate how these new concepts are used in a
combined version of TOUGH2 and TOUGH2-
MP.

In addition, we are improving the software
engineering processes that are used to develop
the TOUGH codes. In particular, we have
improved the build process using CMake, which
simplifies the installation of external packages
on multiple platforms. We also utilize the
Bitbucket service, which provides maintenance-

free access to the Mercurial version control
system, to manage the development of this new
library.

INTRODUCTION

The TOUGH suite of simulators
(http://esd.lbl.gov/TOUGH) is one of the most
complete software packages in the market for
numerical modeling of nonisothermal multi-
phase flow and reactive transport in porous
media. Over the past 30 years, the suite has been
widely adopted by universities, government
organizations, and private industry for applica-
tions to nuclear waste disposal, environmental
remediation problems, energy production from
geothermal, oil, and gas reservoirs as well as gas
hydrate deposits, geological carbon sequestra-
tion, vadose zone hydrology, and other uses that
involve coupled thermal, hydrological, geo-
chemical, and mechanical processes in permea-
ble media.

The suite is continually being updated in
response to scientific advancements, technical
needs, user requests, and changes in hardware
and software architectures. Foremost, code
changes are made to provide the user with the
capabilities needed to address specific scientific
challenges. This requires the development of
new equation-of-state (EOS) modules and
refined process descriptions. Moreover, the
simulators are being used for systems of
increasing size and complexity, making high
numerical performance a key target for further
developments. The system of equations to be
solved increases significantly, not only because
of increased dimensionality, larger model
domains, and higher resolution, which lead to
many more gridblocks, but also because of the
coupling of hydrological, thermal, mechanical,
and biogeochemical processes, which leads to
more equations that need to be solved per

 - 2 -

gridblock. Finally, improved support tools for
model setup, mesh generation, and visualization
and analysis of modeling results are essential for
making an advanced simulator applicable to
complex subsurface flow and transport
problems. This paper focuses on developments
that are mainly concerned with numerical
performance and code maintenance.

PERFORMANCE AND MAINTENANCE

Larger parallel computing resources are becom-
ing economically viable for many TOUGH
users. This increased processing power will
naturally allow them to tackle problems with
greater complexity and at a larger scale. In addi-
tion, the need to solve large problems is becom-
ing more acute as numerical models are
increasingly used as predictive and regulatory
tools. For example, for a geological carbon
sequestration problem that is of interest to
government and industry alike, scientists and
engineers have to use a numerical model that is
sufficiently resolved over a large area, thus
requiring the model to be solved in parallel. This
parallelism is a driving requirement in the work
described in this paper.

TOUGH was initially designed to be a serial
code. To address the need to solve larger
problems and to take advantage of the increased
availability of multiprocessor computers,
TOUGH2 (Pruess et al., 1999; Zhang et al.,
2008) and TOUGH+ (Moridis et al., 2008) were
parallelized based on the standard Message
Passing Interface (MPI) protocol. iTOUGH2,
which uses TOUGH runs to perform parameter
estimation, is parallelized based on the Parallel
Virtual Machine (PVM) protocol (Finsterle,
1998) and can run several (serial) forward
simulations simultaneously.

While these efforts have made available parallel
versions of TOUGH, this parallelization is far
from comprehensive. First, the parallel versions
of these codes are separate software packages
with different source code and are not
maintained or versioned with the “mainline”
TOUGH codes. Second, other codes within the
suite have not been parallelized at all. In partic-
ular, the reaction-transport code
TOUGHREACT V2 is one of the most
demanding codes in terms of equations solved

and computing time, but it has only recently
been partially parallelized for shared memory
architectures using OpenMP (Sonnenthal et al.,
in prep.)

In addition, further work must be done on the
existing parallelized codes to allow them to
realize their full potential. Presently, these codes
cannot perform parallel I/O tasks effectively.
This can cause major slowdowns in simulations
that write a lot of data. The parallel TOUGH
codes are also unable to take advantage of new
computing architectures such as heterogeneous
multicore systems and GPU systems without
significant code modifications.

There are several versions of TOUGH that were
developed to solve particular problems (e.g., the
TOUGH2 and TOUGH2-MP families, the
TOUGH+ and pTOUGH+ families, as well
individual codes such as TOUGHREACT,
iTOUGH2, TOUGH-FLAC, etc.). While the
development of a single inclusive “über-
TOUGH” code may not be feasible (or desired),
there are significant components of all TOUGH
codes that are similar and could leverage a
single shared library. There are obvious engi-
neering benefits to having a common code base
for the TOUGH applications; debugging and
making incremental improvements becomes
more practical when it can be done once, at a
single location in the source code.

THE TOUGHLIB LIBRARY

A library called toughlib is being designed to
provide an API that has functionalities common
to all TOUGH codes. It will focus on two main
functionalities: (1) to provide a common inter-
face to all internal and external linear solvers,
and (2) to provide a more user-friendly imple-
mentation of routines involving parallel commu-
nications. We believe the first functionality will
have immediate benefits, since all TOUGH
codes require solving a large linear system in the
nonlinear solver used in codes. The second
functionality will significantly reduce the over-
head of maintaining (and debugging) a parallel
code. It will also lower the barrier for future
developers that are not familiar with parallel
programming to more easily work with a parallel
code.

 - 3 -

toughlib consists of several Fortran90 modules.
The modules contain data types that are
designed in an object-oriented manner. The
representation of a type, such as a sparse matrix
or a vector, is thus separated from its imple-
mentation. Encapsulation of data and logic in a
type reduces complexity of the code. toughlib
also helps distinguish which data arrays are
global or local to each processor.

Interface to External Linear Solver Packages
One important component to all TOUGH codes
is the sparse linear solver. At present, the
parallel versions of TOUGH (TOUGH-MP and
pTough+) use AZTEC (Tuminaro et al., 1999)
as the main workhorse. However, the develop-
ment of AZTEC has long ceased, at least in its
present form. As such, it does not include some
of the latest developments of linear solver tech-
nologies. The serial version of the TOUGH
codes (TOUGH2, TOUGHREACT and
TOUGH+) use a collection of preconditioned
iterative solvers implemented in T2SOLV
(Moridis and Pruess, 1997), but this code has not
been updated for the past 15 years.

To exploit some of the newer linear solver pack-
ages, toughlib will provide an interface to these
packages. One solver that has demonstrated
success on large parallel systems is PETSc
(Portable, Extensible Toolkit for Scientific
Computation; Balay et al., 2012). PETSc allows
for the use of several preconditioners (e.g., LU,
Block Jacobi, Multigrid) and has many other
features.

While developers can work directly with the
above packages, toughlib aims to provide a
solver API that is specific to the TOUGH codes.
It enables developers to only learn one interface
and have access to all the linear packages that
toughlib will incorporate. In addition, toughlib
will also provide an API to the existing AZTEC
and T2SOLV routines, allowing developers to
easily transition to the new interface of toughlib.
All the benefits of these additional external
linear solvers will then be immediately available
to developers, including the ability to choose the
appropriate solvers and preconditioners, without
recompiling the code.

In addition to the nonlinear solver used to solve

the flow and transport phenomena, the geo-
chemistry model in TOUGHREACT (Xu et al.,
2011) requires solution of ordinary differential
equations. While current in-house approaches
appear to be satisfactory for the moment,
toughlib can provide other alternatives. Under
consideration is an interface to an external ODE
solver such as the SUNDIALS package
(Hindmarsh et al., 2005). This would allow
TOUGHREACT users to easily test out different
numerical algorithms to improve the efficiency
of the code.

Figure 1 schematically shows the interfaces
between toughlib and the core simulator.

Figure 1. Interfaces are layers that allow inter-

changeable implementations.

Parallel Framework
High-performance computing is a peculiar
branch of science, because its significance is
completely determined by its success at
performing ever-larger simulations in ever-less
time. Thus, the performance of parallel simula-
tions is paramount in any modern scientific code
that aims to solve the types of problems that
interest TOUGH users.

Improving the parallel performance first requires
improving a parallel framework, accomplished
by toughlib. The parallel versions of the
TOUGH codes require several steps that are not
needed in a serial version, such as domain
decomposition, various functions required by the
parallel solver algorithms, and any necessary
additional data storage. Additionally, the serial
versions can (and typically do) use a different
solver than the parallel version. However, there
are good reasons to write functions that will
allow development of a TOUGH code that will
run in serial or parallel (or parallel using only
one processor). The functions in toughlib are

!"
#$
%&
'%(

)*
&$
%'

+,-.(/%&'
012!3'
45216'

2789:'

matrix_create
vector_create
solver_create
solver_solve 7;1'!()*&$%'

+,-.(/%&'
'<&=>(,' ?7;1'

ODE_create
ODE_set_system
ODE_solve

 - 4 -

written such that they can be used in serial or
parallel mode. For example, a function for
domain decomposition would simply return
when only one processor is being used. The
advantages of one code that can run in serial or
parallel are reduction in the total amount of
code, easier maintenance, more robust testing,
and easier debugging.

We would also like to make parallel program-
ming with MPI easier for the TOUGH devel-
oper. One way to do this is write functions that
do most or all of the communication in toughlib
and provide convenience functions for doing
typical operations, such as summing a variable
to obtain the global value or interacting with the
parallel file system.

There are various ways that toughlib can address
parallel performance. If most of the code to
handle parallel operations and communication
are implemented in toughlib, then any perfor-
mance improvements would benefit all TOUGH
codes that use it. For example, a common
performance improvement is caching and
serializing data before sending it to another
processor. It is often best to reduce the number
of communication calls and increase the buffer
sizes.

The field of high performance computation is
advancing rapidly, and with each new parallel
machine being built comes new hardware and
software that may require code changes in the
application to compile or effectively use the
resources. The toughlib library will be portable
and strive to be efficient across a wide range
problem types and sizes on available platforms.
It will focus on relatively uncomplicated data
types such as matrices and vectors that are
commonly used in existing TOUGH codes. and
whose use and characteristics are well under-
stood by developers.

Essential to improving computational perfor-
mance for any serial or parallel code is the
measurement of quantities like wall-clock time,
memory use, and floating-point operations.
Utility functions can help provide these in a
manner that makes sense to TOUGH codes for
various machine architectures.

Other toughlib Benefits
Toughlib uses CMake, which is a package for
managing configuration and building of software
applications. CMake is especially useful for
building external libraries that toughlib or
TOUGH codes may depend on. We will use
version control software for developing
toughlib, and it currently exists in a Mercurial
repository (distributed source control manage-
ment tool). The toughlib software will be
distributed through a Bitbucket account at
Lawrence Berkeley National Laboratory.
Bitbucket offers secure source-code hosting of
repositories, making it easier to manage team
software development. CMake, Mercurial, and
Bitbucket are freely available. These practices
could be extended to the TOUGH codes.

We can include functions that perform routine
checks, ensuring valid input to save time
tracking down problems. Output functions, such
as those for writing VTK-formatted files, could
be maintained in toughlib as well. The mesh
format for TOUGH codes has many features that
are similar, and common operations on the mesh
can be maintained in toughlib. Various physical
constants could be defined and maintained in
one place.

FUTURE WORK

TOUGHREACT developers are beginning to
use threading (via OpenMP) to speed up the
calculation of chemical reactions, which are
usually the most cpu-intensive component of
reactive-transport problems (Sonnenthal et al., in
prep). This might prove to be beneficial for other
TOUGH codes.

As toughlib matures, the TOUGH developers
and users will be able to focus more on the
science and less on the solvers and parallel
concepts.

ACKNOWLEDGMENT

We acknowledge the support of Lawrence
Berkeley National Laboratory’s Innovation
Grant. This work was supported, in part, by the
U.S. Dept. of Energy under Contract No. DE-
AC02-05CH11231.

 - 5 -

REFERENCES

Finsterle, S., Parallelization of iTOUGH2 Using
PVM, Report LBNL-42261, Lawrence
Berkeley National Laboratory, Berkeley,
Calif., October 1998.

Moridis, G.J., and K. Pruess, T2SOLV: An
Enhanced Package of Solvers for the
TOUGH2 Family of Reservoir Simulation
Codes, Report LBNL-40933, Lawrence
Berkeley National Laboratory, Berkeley,
Calif., 1997.

Moridis, G.J., M.B. Kowalsky, and K. Pruess,
TOUGH+HYDRATE v1.0 User's Manual: A
Code for the Simulation of System Behavior
in Hydrate-Bearing Geologic Media, Report
LBNL-149E, Lawrence Berkeley National
Laboratory, Berkeley, Calif., 2008.

Pruess, K., C. Oldenburg, and G. Moridis,
TOUGH2 User’s Guide, Version 2.0, Report
LBNL-43134, Lawrence Berkeley National
Laboratory, Berkeley, Calif., 1999.

Tuminaro, R. S., Heroux, M., Hutchinson, S. A.,
Shadid, J. N., Official AZTEC User's Guide:
Version 2.1, December, 1999.

Balay S., Brown J., Buschelman K., Eijkhout V.,
Gropp W., Kaushik D., Knepley M.,
McInnes L., Smith B., and Zhang H., PETSc
Users Manual, ANL-95/11 – Revision 3.3,
Argonne National Laboratory, 2012.

Hindmarsh A. C., Brown P. N., Grant K. E., Lee
S. L., Serban R., Shumaker D. E., and
Woodward C. S., "SUNDIALS: Suite of
Nonlinear and Differential/Algebraic
Equation Solvers," ACM Transactions on
Mathematical Software, 31(3), pp. 363-396,
2005.

Xu, T., N. Spycher, E. Sonnenthal, G. Zhang, L.
Zheng, & K. Pruess, TOUGHREACT
Version 2.0: A simulator for subsurface
reactive transport under non-isothermal
multiphase flow conditions.Computers and
Geosciences, 37:763–774, 2011.

Zhang, K., Y.-S. Wu, and K. Pruess, User's
Guide for TOUGH2-MP — A Massively
Parallel Version of the TOUGH2 Code,
Report LBNL-315E, Lawrence Berkeley
National Laboratory, Berkeley, Calif., 2008.

